Example-dependent Basis Vector Selection for Kernel-Based Classifiers

نویسندگان

  • Antti Ukkonen
  • Marta Arias
چکیده

We study methods for speeding up classification time of kernel-based classifiers. Existing solutions are based on explicitly seeking sparse classifiers during training, or by using budgeted versions of the classifier where one directly limits the number of basis vectors allowed. Here, we propose a more flexible alternative: instead of using the same basis vectors over the whole feature space, our solution uses different basis vectors in different parts of the feature space. At the core of our solution lies an optimization procedure that, given a set of basis vectors, finds a good partition of the feature space and good subsets of the existing basis vectors. Using this procedure repeatedly, we build trees whose internal nodes specify feature space partitions and whose leaves implement simple kernel classifiers. Experiments suggest that our method reduces classification time significantly while maintaining performance. In addition, we propose several heuristics that also perform well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Support Vector Regression Using Mahalanobis Kernels

In our previous work we have shown that Mahalanobis kernels are useful for support vector classifiers both from generalization ability and model selection speed. In this paper we propose using Mahalanobis kernels for function approximation. We determine the covariance matrix for the Mahalanobis kernel using all the training data. Model selection is done by line search. Namely, first the margin ...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Large Scale Musical Instrument Identification

In this paper, automatic musical instrument identification using a variety of classifiers is addressed. Experiments are performed on a large set of recordings that stem from 20 instrument classes. Several features from general audio data classification applications as well as MPEG-7 descriptors are measured for 1000 recordings. Branch-and-bound feature selection is applied in order to select th...

متن کامل

The Use of Bayesian Framework for Kernel Selection in Vector Machines Classifiers

In the paper we propose a method based on Bayesian framework for selecting the best kernel function for a particular problem. The parameters of the kernel function are considered as model parameters and maximum evidence principle is applied for model selection. We describe a general scheme of Bayesian regularization, present model of kernel classifiers as well as our approximations for evidence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010